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SUMMARY

Many daily behaviors require us to actively focus on
the current task and ignore all other distractions.
Yet, ignoring everything else might hinder the ability
to discover new ways to achieve the same goal.
Here, we studied the neural mechanisms that sup-
port the spontaneous change to better strategies
while an established strategy is executed. Multivar-
iate neuroimaging analyses showed that before the
spontaneous change to an alternative strategy,
medial prefrontal cortex (MPFC) encoded informa-
tion that was irrelevant for the current strategy
but necessary for the later strategy. Importantly,
this neural effect was related to future behav-
ioral changes: information encoding in MPFC was
changed only in participants who eventually
switched their strategy and started before the actual
strategy change. This allowed us to predict sponta-
neous strategy shifts ahead of time. These findings
suggest that MPFC might internally simulate alterna-
tive strategies and shed new light on the organization
of PFC.

INTRODUCTION

Goal-directed behavior is a hallmark of intelligent behavior. To

pursue a goal, we usually follow a particular strategy that we

think will achieve our objective. This strategy, or behavioral

policy, can in principle be any mapping between a state of the

environment and actions that need to be taken in order to

achieve a particular goal (Sutton and Barto, 1998). Imagine, for

example, that you are leaving a New York subway station and

need to find out which direction north is. Most likely, you will
be looking for the exit signs, which indicate the direction. The

execution of such a strategy will cause you to focus on finding

the exit signs in the busy subway station and to ignore all other,

seemingly distracting, information. This ability to focus on the in-

formation that is relevant for an established strategy has the

obvious advantage to make goal-directed behavior more effi-

cient. At the same time, however, this focusmight hinder the dis-

covery of new—and potentially better—strategies. For instance,

you could notice that the direction in which the cars are driving

on the avenues also can tell you where north is. This new infor-

mation may generate a superior strategy, which can achieve

the same goal but is applicable to situations outside the subway

and depends on cues that are easier to find.

The opposition between strategy exploitation and exploration

creates a difficult dilemma for the brain. On the one hand, goal-

directed behavior requires the neural processing of sensory in-

formation to become adjusted such that it makes the execution

of a current strategy efficient (a process that is part of the more

general concept of cognitive control; e.g., Miller and Cohen,

2001). On the other hand, discovering new strategies requires

one to assess the potential usefulness of seemingly distracting

information (strategy exploration, cf. Donoso et al., 2014).

Here, we asked how the brain could solve this dilemma and

find a balance between cognitive control and strategy explora-

tion. Despite the wide interest in related issues (Cohen et al.,

2007; Hayden et al., 2011; Holroyd and Yeung, 2012; Kounios

and Beeman, 2014; March, 1991; Reverberi et al., 2005), this

question represents a major gap in our current understanding

of prefrontal cortex (PFC) functioning. Many studies have shown

that neural activity in PFC encodes components of currently

active strategies (such as ‘‘task-sets,’’ rules, or relevant stimuli)

(e.g., Reverberi et al., 2012; Sakai and Passingham, 2006; Sakai

et al., 2002), and broadcasts a brain-wide bias that favors pro-

cessing of task-relevant over task-irrelevant aspects (Dehaene

et al., 1998; Desimone and Duncan, 1995; Dreisbach andHaider,

2008; Miller and Cohen, 2001). But how these cognitive control

functions can coexist with functions that support strategy
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Figure 1. Spontaneous Strategy Switch Task

(A) An example sequence of trials in different conditions. The stimulus con-

sisted of a white frame, which was partially filled with small, randomly

distributed colored squares (all either red or green). In standard trials, the patch

of colored squares was closest to only one corner of the white frame. In

ambiguous trials, the patch was at equal distance to all corners of the frame. In

Late Go trials, the white frame appeared with a delay of 2,000 ms. Numbers

below condition names show trial proportions and durations.

(B) Participants were instructed to react to the corner of the patch within the

white frame (left, S-R = stimulus-response). Alternatively, after the first 10 min,

participants could detect the correlation between color and response and

decide to use color to generate the answer (right).
explorations, remains unclear. In particular, existing studies have

used experimental approaches that simplified the problem and

therefore missed crucial aspects of the dilemma. For example,

the alternative strategy/option is often not learned but instructed

(Jepma and Nieuwenhuis, 2011; Kolling et al., 2012), or experi-

mental interventions encourage strategy explorations (Daw

et al., 2006; Hayden et al., 2011; Meiran, 1996; Monsell, 2003;

Nassar et al., 2010; Yu and Dayan, 2005). Furthermore, promi-

nent theories of PFC function have assumed that in the presence

of a reliable strategy, alternative strategies are not explored

(Donoso et al., 2014), or they have suggested that conflicts are

the primary signal to trigger adaptations in cognitive control (Bot-

vinick et al., 2001).

This study investigated spontaneous strategy improvements,

which occur during the execution of a current strategy and there-

fore despite the presence of top-down cognitive control. We de-

signed amore naturalistic task in which strategy discovery has to

be based on learned environmental statistics and has to occur in

parallel to the execution of the old strategy. No instructions

about alternative strategies are given. We combined this novel

experimental paradigm with multivariate pattern analysis of neu-

roimaging data, allowing us to track the neural encoding of task-
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irrelevant information during a spontaneous strategy discovery

and change. We expected stimulus features, which are irrelevant

according to the current task strategy, to be mostly suppressed.

Yet, learning mechanisms may trigger a change of strategy in a

spontaneous, non-instructed manner. We predicted that such

a change in strategy would be reflected in an increase in the en-

coding of task-irrelevant sensory signals in frontal cortex imme-

diately before and after the strategy change.

RESULTS

Participants were instructed to respond manually to the location

of a patch of small, colored squares within a square reference

frame (Spontaneous Strategy Switch Task, Figure 1). While

they were instructed to select a response depending on the po-

sition of the patch within the reference frame, we induced a

deterministic relationship between the stimulus color (red or

green) and the correct response (left or right) after 336 trials

(�10 min). Learning this relationship did in principle allow partic-

ipants to switch their strategy and rely on stimulus color rather

than position (or both) to perform the task.

Behavioral Analyses
Our behavioral analysis aimed at revealing dynamics that were

related to a strategy change that involved processing stimulus

color (which was task-irrelevant according to the instructed

task set). A post-experimental questionnaire indicated that

eleven out of 36 participants (31%) had noticed and used the

color information (henceforth, color users). On a general level,

color users and corner users had comparable mean RTs

(505ms versus 562ms, p = 0.24), and amarginally significant dif-

ference in error rates (4.2% versus 5.7%, p = 0.07). The analyses

below will investigate potential differences in more detail. An

online behavioral measure, in which position information was

ambiguous (see Experimental Procedures), showed that the pro-

portion of color-consistent choices in these trials indeed

increased over time for color users (see Figure 2A, white line).

Although this average time course of color use appears gradual,

individual color users showed abrupt onsets. We thus deter-

mined large abrupt increases in color use (change-points) using

the CUSUMmethod (Durstewitz et al., 2010) and aligned all time

series to each participant’s individual change-point (Figure 2B).

Interestingly, color users changed their strategy spontaneously

with no apparent relation to the elapsed number of trials—result-

ing in a temporal distribution of the change-points not signifi-

cantly different from uniform (c2 test, p = 0.16). The remaining

25 participants (henceforth, corner users) did not report use of

the color strategy in the questionnaire. Moreover, corner users

did not show the abrupt onset of color use in ambiguous

trials, which was apparent in color users (Figures 2A and 2B;

Time 3 Group: F(10, 340) = 15.6, p < 0.001; h2 = 0.8). Further

supporting the distinction between color and corner users, an

analysis of standard trials showed that color users’ RTs tended

to transiently slow down before the change-point and speed

up after it, whereas non-users did not show this pattern (Fig-

ure 2C; Time 3 Group of RT slopes [lag 2]: F(2.1, 136.6) = 3.0,

p = 0.01, h2 = 0.34). Slight performance benefits resulting from

the updated strategy were reflected in reduced errors after color
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Figure 2. Behavioral Results

During the experiment, participants spontaneously

separated into two groups of either color (white) or

corner users (gray lines; group membership deter-

mined by questionnaire).

(A) Average percent of choices consistent with color

when stimulus position was ambiguous across

blocks (84 trials). The shaded areas on the left

and right indicate blocks before color correlated

with corner and blocks with instruction to use

color, respectively. Background color indicates the

binomial probability of choices assuming random

behavior.

(B) Color users showed abrupt onsets of color use.

For each participant, all data were aligned to the

individual change-point (dashed line).

(C–F) Several independent behavioral markers

showed significant Group 3 Time interactions,

including a transient RT slowdown before the switch

([C], upper panel shows RTs; lower panel lag-2 RTs;

i.e., RT differences between blocks n and n-2),

reduced errors and congruency effects following

the switch ([D] and [E]), as well as increased antici-

patory key-presses in delayed trials (F). All error

bars/shadings represent mean ± SEM. See also

Figure S1.
users’ change-point (Figure 2D; group comparison after switch,

t(32.5) = 2.73, p = 0.01, d = 0.69; Time 3 Group ns.). For color

users, reduced reliance on spatial stimulus information during

standard trials led to a decrease in the spatial congruency effect

(Figure 2E) (RTcongruent � RTincongruent, i.e., comparing trials in

which horizontal stimulus position and response location did

match versus did not match; t-test group comparison after

switch, t(31.3) = 2.56, p = 0.02, d = 0.62; Time 3 Group, ns.).

At the same time, an increased amount of anticipatory

(correct) key-presses in NoGo ( = no response required) trials

following color users’ change-point (Figure 2F; Time 3 Group,

F(5.7,188.0) = 2.68, p = 0.02, h2 = 0.71) indicated a strengthened

association between stimulus color and motor responses. Note

that we found hints for group differences already before the

onset of the color-corner correlation. Color users tended to

have smaller congruency effects than corner user already during

the random runs at the beginning of the experiment, (t(32.86) =

1.72, p = 0.09, d = 0.48). They also showed a trend for faster

RTs (t(29.9) = �1.67, p = 0.10, d = 0.51). At the same time, there

was no difference in error rates (t(33.2) = �0.89, p = 0.41,

d = 0.24). Thus, conflict evoked in incongruent trials might not

have been a driving force behind the task set update. In sum-

mary, the above results support the distinction between color

and corner users in a number of independent behavioral

markers. The emergence of group differences was in most

cases related to the change-point and hence in accordance

with the temporal dynamics as indicated by the choices in the

ambiguous trials. In particular, color users showed reduced

errors and congruency costs in standard trials after the task

set change, and a transient increase in RTs before it. These

results indicate that the processes that preceded the switch to

the alternative strategy are associated with costs and result

in performance benefits after the new task set has been

established.
Decoding Information about Stimulus Features from
Local Brain Activation Patterns
Representation of stimulus color was analyzed by a multivariate

classification approach based on a support vector machine

(SVM) with a linear kernel in combination with a searchlight

approach (Haynes et al., 2007; Kriegeskorte et al., 2006). The

data were divided into small time bins, and the SVM was trained

and tested on parameter estimates (‘‘betas’’) from a general

linear model of red and green NoGo trials (see Experimental Pro-

cedures for details). To assess the representation of stimulus

position (corner), a similar analysis was conducted based on

betas of standard trials. The resulting time series of whole-brain

accuracy maps was aligned to each participant’s individual

change-point and submitted to a univariate t-test. Most results

refer to color users; see Figure S2 for corresponding analyses

in corner users.

Consistent with our expectations, the analysis of color users’

brain activity revealed several frontal brain areas in which we

could decode color information only immediately prior to or after

the change-point. Most interestingly, the stimulus became de-

codable from MPFC during the two blocks immediately before

the change-point (Peak MNI Coordinates: 5/53/22, AAL Label:

Frontal_Sup_Medial_R, duration of time window: 168 trials or

about 5 min). After the strategy switch, color information

emerged in lateral frontal brain areas, including themiddle frontal

gyrus (�36/11/33, Frontal_Mid_L) and the right Insula (42/-8/8,

Insula_R). In contrast, mean color decoding across all time

points (including early time points) was limited to visual cortex

(clusters at 18/-87/-2 Calcarine_R, �22/-93/-2 Occipital_L, and

32/-72/-25 Cerebellum_Crust1_R; Figure 3). To formally test

the different time courses of color encoding in medial and

lateral frontal areas, we performed an interaction test between

ROI (medial PFC versus lateral PFC/Insula; ROIs determined

independently, see Experimental Procedures), Time (before,
Neuron 86, 331–340, April 8, 2015 ª2015 Elsevier Inc. 333



Figure 3. Stimulus Color Decoding

Classification accuracy was analyzed separately for

either all blocks (mean) or only blocks immediately

before the switch or after the switch (see gray

shading in [B]; see also Figure S1).

(A) Color maps show areas in which stimulus color

could be decoded (pFWE < 0.05, cluster corrected).

All three time windows showed distinct brain areas.

Evidence for mean (time constant, see right) color

representation was found in visual areas only,

whereas color information emerged in MPFC

immediately before the switch (left), and was at last

found in the Insula and DLPFC (medial frontal gyrus,

MFG, BA10).

(B) Time courses of decoding accuracy from shown

clusters (smoothed with run. avg. of 2). See also

Figure S2. Peak locations of individual subjects

can be found in the Supplemental Information and

Table S1.
immediately prior to, and after the switch) andGroup (color users

versus corner users). This analysis indicated an interaction that

reflected the differential time courses of color encoding in lateral

and medial frontal areas (F(2, 68) = 4.5, p = 0.02): in MPFC the

amount of color coding did not differ between groups before or

after the switch, whereas such a difference was evident immedi-

ately prior to the switch (ps for before and after: 0.16 and 0.48,

p for immediately prior: < 0.01, all ps are one tailed). In lateral

PFC, in contrast, no difference could be found either before

(p = 0.39) or immediately prior to the switch (p = 0.94), but a sig-

nificant difference emerged after the switch (p = 0.03). Consid-

ering the same analyses only within the color user group showed

comparable effects, as reflected in a Time X ROI interaction

effect (F(2, 20) = 5.4, p = 0.01). We next analyzed the encoding

of stimulus corner information in color users. This analysis re-

vealed frontal areas in which corner could be decoded before

but not after the change-point. In particular, we found high

corner classification in superior frontal gyrus (23/9/53, Frontal_

Sup_R), extending medially into the middle cingulate cortex

(MCC, 9/17/43, Cingulum_Mid_R) and transient corner decoding

in the superior parietal lobule (SPL, 23/-42/61, Postcentral_R).

After the switch from instruction-based task processing (corner)

to incidental learning-based task processing (color), no above-

chance corner classification could be found (Figure 4).

Relation between Information Encoding in MPFC and
the Use of Color Information
Our analysis revealed that activity patterns in medial prefrontal

areas contained information about stimulus color before color-

based response selection began. Next, we scrutinized the

temporal relation between color encoding in MPFC and the

behavioral change more directly. To this end, we tested if and

when color-decoding accuracy would allow us to discriminate

between color and corner users. Specifically, we extracted

time courses from peak voxels within the PFC and applied a

simple threshold classifier (participants with classification accu-

racy > 50% are classified as color users; voxel-selection and

testing cross-validated; for details, see Experimental Proce-

dures) (Figure 5A shows the peaks of the odd and even groups).

Figure 5B shows that a significant proportion of the sample could
334 Neuron 86, 331–340, April 8, 2015 ª2015 Elsevier Inc.
be classified correctly with this simple method, with above

chance classification starting four blocks before and peaking

at about one block before the switch (73%, p = 0.01). A ROC

analysis over all possible thresholds confirms the best classifi-

ability around the same time (see Supplemental Information). In

addition, an analysis using non-time-locked data also confirmed

the discriminability of both groups (see Supplemental Informa-

tion; Figures S3 and S4). Hence, even an analysis that is

completely agnostic to the switch decision and switch time

points allowed us to predict participant’s upcoming strategy

change.

Relation between Information Encoding in MPFC and
Conscious Knowledge about the Alternative Strategy
Finally, we explored the relation between the time point when

participants gained conscious awareness of the color-corner

relation and the onset of color encoding in MPFC. To address

this issue, we analyzed the post-experimental questionnaire in

which participants were asked to retrospectively asses the

time when they became aware of the color-corner relation.

These verbal reports correlate highly with the time of strategy

change that was determined based on behavior (r = 0.82,

p = 0.002). Importantly, however, the reported time points

where temporally very close to the behavioral switch (mean dif-

ference: 0.14 blocks; t-test that the difference between verbal

report and behavioral switch is different from 0: p = 0.82).

Thus, conscious awareness presumably came after the onset

of color encoding in MPFC (Figure 5), which started four blocks

before (�4) and peaked one block (�1) before the switch. A t-test

between the reported time of verbal knowledge and the earliest

onset of color encoding in MPFC (�4) supports the notion that

verbal knowledge came significantly later (p < 0.001). To further

support these findings, we conducted a control experiment

(n = 23) whose sole purpose was to refine the method with which

the conscious awareness was assessed (the retrospectivemem-

ory test was closer in time to the behavioral switch; see Experi-

mental Procedures). Nine participants crossed the threshold

for color use and where stopped right after their behavioral

switch (see Experimental Procedures). As before, the given ver-

bal report correlated highly with the behavioral switch (r = 0.87)



Figure 4. Stimulus Corner Decoding in Color

Users

Corner classification was analyzed in separate time

windows (indicated by the gray background areas

on the time course plots; pFWE < 0.05, cluster cor-

rected). The presented results stem from time

windows that included either all blocks before

(�5 to 0, ‘‘Early’’) or immediately before (‘‘Before,’’

same as in Figure 3). Time windows after the switch

did not show any significant results and hence are

not shown (see also Figure S2).

(A) Evidence for corner representation could be

found initially in frontal brain areas (medial frontal

gyrus, MFG, BA10) as well as in middle cingulate

gyrus (MCC) and transiently before the switch in

superior parietal lobule (SPL).

(B) Time courses from shown clusters; gray back-

ground area indicates relevant time window. See

also Figure S2.
and provided evidence that participants became aware after

we could find significant MPFC decoding in our main experi-

ment: a t-test between the reported time of verbal knowledge

in this new experiment and the earliest onset of color encoding

in MPFC (�4) again supported the idea that verbal knowledge

came significantly later (p < 0.002).

DISCUSSION

When facing a complex task, we often don’t know if the current

strategy is the best of all possible strategies. Information-rich en-

vironments often allow to use alternative strategies that can lead

to the same goal, potentially in a more effective manner. At the

same time, the efficient implementation of an existing strategy

involves top-down control mechanisms, which degrade the rep-

resentation of irrelevant information and hence make exploring

such alternatives unlikely and difficult. Here, we studied the abil-

ity to spontaneously discover and implement new strategies. Our

paradigm allowed, for the first time, the in-lab reproduction of

this striking ability and the opportunity to track its neural

underpinnings.

Participants were instructed with valid rules to perform a task

based on the spatial location of a stimulus. Unmentioned but

simple regularities in the task environment (stimulus color), how-

ever, could lead to a new strategy for reaching the same task

goal. Although this regularity was very simple and repeated

many times, most participants’ focus on the instructed sensory

signal was so strong that it prevented them from discovering

(53%) or using (16%) the alternative strategy. As a result, only

31% of participants changed to the new color-based strategy.

Once it was triggered, however, the behavioral transition to the

new strategy started abruptly and was completed within a few

minutes. Importantly, we found that the neural encoding of color

information was uniquely related to the behavioral switch in color

users. Specifically, we revealed that in areas known to be

involved in the representation of task sets, namely DLPFC and

Insula (see Dosenbach et al., 2006, but note that other cognitive

functions have been linked to these areas as well), color encod-

ing emerged only after the behavioral change. Most interestingly,

we found that the BOLD signal in MPFC started encoding color
information several minutes before the new strategy was actually

applied. Based on this effect, we could predict which of our par-

ticipants would apply the color strategy.

Our findings suggest an important role of MPFC in the sponta-

neous updating of mental programs. First, we showed that

MPFC started encoding stimulus color of the current trial when

participants were still pursuing the original (position-based)

strategy. Strikingly, MPFC behaved as if it was involved in per-

forming the task based on color, even though participants had

not yet started doing so overtly. We speculate that MPFC is

involved in planning and evaluating a future strategy shift by

internally simulating the alternative strategy (Jeannerod, 2001;

Sutton, 1990). This process takes place before a decision for

the implementation of the alternative strategy is made, a process

akin to counterfactual thinking (Barbey et al., 2009). Second, we

showed that MPFC encoded a stimulus feature that was task-

irrelevant according to the instructed task set. A large body of

studies has shown that an important function of PFC is indeed

to disadvantage processing of task-irrelevant information (e.g.,

Doll et al., 2009; Dreisbach and Haider, 2008; Duncan, 2001;

Miller and Cohen, 2001). In support of this idea, our own findings

showed that color processing was strongly impaired: the major-

ity of participants did not notice the color-response relationship,

despite its simplicity and the fact that the deterministic relation-

ship could be observed in over 700 trials. Hence, the early

encoding of color in MPFC in color users seems to reflect be-

tween-subject differences in the extent to which information pro-

cessing excluded task-irrelevant information. Accordingly, our

finding suggests that MPFC could escape the top-down bias.

At the same time, in those participants who did not discover

the color strategy, it remains an open question whether the in-

struction led to impaired learning of task-irrelevant information

or only suppressed the effect irrelevant knowledge has on

behavior (Doll et al., 2009; Gaschler et al., 2012; Zhao et al.,

2013). In addition to our findings on color representation, we

found largely absent or decreasing corner representation in color

users (Figure 4). This contrasts with widespread corner encoding

in corner users (Figure S2), although it is notable that the network

employed to represent color in color users and corner in corner

users did not overlap completely (see gray lines in Figure 2).
Neuron 86, 331–340, April 8, 2015 ª2015 Elsevier Inc. 335



Figure 5. Relations of Information Encoding to Performance

(A and B) Evidence for color representation in MPFC could be used to deter-

mine group membership, even before participants showed behavioral signs of

using the color. Time courses of color classification accuracy were extracted

from brain areas encoding color during the switch (A) and used to classify

subjects into color and corner users as a function of time ([B]; smoothing as in

Figures 3 and 4). See also Figures S3 and S4.
Our findings relate to several studies that have previously

offered accounts of MPFC function. Regarding the effects of

changing a strategy, our findings agree with research that indi-

cated that neurons in MPFC show abrupt and in some cases

transient state transitions that accompany changes in the used

rules/strategy (Durstewitz et al., 2010; Karlsson et al., 2012;

Rich and Shapiro, 2009) or proposed that MPFC is involved in

selecting a different action routine (Holroyd and Yeung, 2012).

Other research suggested that ACC, a subregion of MPFC, pro-

cesses conflict signals and evaluates the expected value of con-

trol (Botvinick et al., 2001; Shenhav et al., 2013), thus indicating a

role of MPFC in cognitive control. Finally, the same brain area

has also been linked to foraging (Hayden et al., 2011; Kolling

et al., 2012; but see Shenhav et al., 2014) and exploration (Karls-

son et al., 2012), suggesting that ACC encodes the ‘‘value of

switching to a course of action alternative to that which is taken

or is the default’’ (Kolling et al, 2012, p. 97). While our paradigm

involves all of these components—strategy switching, adaptions

in cognitive control, and deciding to explore novel courses of

action—our approach allowed us to offer a new perspective on

the functional role of MPFC in cognitive control and strategy

switching. By showing that MPFC directly engaged in process-

ing of stimulus features, our findings indicate that this brain

area deals with the specific stimulus properties whose process-

ing is affected by cognitive control (here: the color), rather than

only ‘‘global’’ variables relating to the amount of necessary

cognitive control (such as conflict, the value of control, or the

value of foraging). Our interpretation of an internal simulation

process could link our results to evidence of internally generated

sequences in the rat hippocampus (Johnson and Redish, 2007)

that reflect internal planning and influence activity in MPFC (Pez-

zulo et al., 2014).

In addition to these commonalities, our findings represent

challenging evidence for a recent theory of PFC function

(Donoso et al., 2014), which prescribes a role of anterior and

lateral frontal areas for exploring alternative strategies and

assumes that exploration is related to the unreliability of the

current strategy. Moreover, by not mentioning the alternative op-

tions, our approach contrasts with existing research (e.g., Kolling

et al., 2012). Rather, our paradigm explored participants’ ability
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to learn statistical relationships in the environment that could

lead to the new strategy. This shows that incidental learning

about features of the environment can interact with mechanisms

that adjust cognitive control and drive spontaneous exploration

of alternative strategies. Importantly, throughout the experiment

the instructed task set remained veridical (and hence reliable), all

participants made few errors, and our behavioral analyses did

not show any positive relation between measures of conflict

and the probability to discover and use the alternative rule.

Thus, the observed exploration of alternative strategies does

not seem to be driven by unreliability, conflict, or errors, as in pre-

vious studies (Botvinick et al., 2001; Collins and Koechlin, 2012;

Daw et al., 2006; Donoso et al., 2014; Nassar et al., 2010).

Rather, our findings would better relate with previous evidence

showing the involvement of MPFC in deciding which task to

perform in the future (Haynes et al., 2007; Momennejad and

Haynes, 2013; Soon et al., 2013; Wisniewski et al., 2014).

Note, however, that in the above-mentioned studies a (mostly

a priori specified) rule was decoded from brain activity, whereas

our study decoded stimulus features. Hence these existing

studies were suited to answer questions about the representa-

tions of task sets/rules during or prior to their application,

whereas the present study focused on the question how estab-

lished task sets control which information is represented in pre-

frontal brain areas and how prefrontal representations of sensory

information changes as a result learning about statistical rela-

tions in the environment. For this reason, the present experiment

investigated the switch toward a strategy that was not specified

by instructions, self-learned, and discovered despite the exis-

tence of an instructed and working rule.

MPFC was not the only region that encoded color. Following

the strategy shift, we found that color information was present

in the Insula and in the left DLPFC, while before the switch corner

information was found in the right DLPFC. These findings are

compatible with preceding proposals and evidence on the neural

basis of cognitive control and the implementation of tasks

(Koechlin et al., 2003; Reverberi et al., 2012; Sakai, 2008; Sakai

and Passingham, 2006; Woolgar et al., 2011). Furthermore, they

show how frontal cortex modifies the represented information

depending on what is relevant in the current context (Freedman

et al., 2001; Stokes et al., 2013). Recent research has also high-

lighted the importance of the adaptive representation of informa-

tion that is relevant in the context of the current task (so called

‘‘task states’’) for reinforcement learning (see Wilson et al.,

2014). The present results are witness to the ability of frontal flex-

ible coding and its potential interaction with learning.

One interesting question for future research is to assess the

role of conscious and unconscious processes in the times before

and during the changes in cognitive control and the applied strat-

egy.While our own data indicate that the conscious realization of

the color-corner relation occurs at the time of the behavioral

switch (verbal reports of when participants realized the relation

correlate to r = 0.82 with the behavioral switch time point and

do not differ from each other, p = 0.83), our control experiment

showed that 33% (3/9) of color using participants reported that

they noticed the relation only because they had involuntarily

started exploiting it (Frensch et al., 2003). Future research could

thus employ more stringent methodology to assess conscious



knowledge and which neural processes relate to the transition

from conscious to unconscious knowledge of environmental sta-

tistics (e.g., Rose et al., 2010; Schuck et al., 2013). Note that our

finding that participants’ awareness of the alternative strategy

arose mostly after we found the signal in MPFC also indicates

that our results are not related to the possibility of insights or

Aha moments. Although elucidating the role of insight for the

spontaneous discovery of alternative strategies is an interesting

question (Kounios and Beeman, 2014; Luo and Knoblich, 2007),

our task does not include a classic ‘‘problem’’ to solve and thus

our results do not directly speak to this question.

Taken together, the present study showed that MPFC is

involved in the spontaneous exploration of irrelevant information

that led to the discovery and implementation of a new strategy.

Crucially, this change of strategy was self-initiated by partici-

pants and not cued by any experimental intervention. Hence, it

is an example of self-driven and flexible goal-directed behavior.

By showing that MPFC encoded aspects of the stimulus that

eventually came to control behavior, our results highlight the

role of MPFC in carrying out computations related to freely cho-

sen exploration and adaptation of cognitive control. Finally, pre-

diction of color use across subjects is, to our knowledge, the first

demonstration that a future choice can be predicted from brain

activity even when the experiment did not ask for a choice to

be made at all. Our results shed new light on the computations

carried out in MPFC and suggest that these processes are

involved in initiating, rather than implementing, the spontaneous

updating of the mental structures, which support goal-directed

behavior.

EXPERIMENTAL PROCEDURES

Participants

Thirty-six volunteers (22 female, mean age 25.8 [21–31]) participated in the

fMRI study in return for reimbursement (20 V/hr). Prior to recruitment, all

potential participants were screened for MRI eligibility and provided informed

consent to participation. The behavioral control experiment included 23 partic-

ipants (14 female, mean age 22.9 [19–28]). The institutional review board at

Humboldt University approved the study.

Task and Procedure

Behavioral and imaging data of the main experiment were recorded while par-

ticipants performed a simple perceptual decision-making task (Spontaneous

Strategy Switch Task). Participants were instructed to respond manually to

the position of a patch of colored dots within a square reference frame (Fig-

ure 1A). They were asked to select one of two responses depending on which

corner of the reference frame the colored squares were closest to. Participants

held a button box in each hand and could press either left or right. Two oppo-

site corners (along the diagonal) were mapped to the same response (Fig-

ure 1B). The main task during scanning included twelve runs with 168 trials

each. In Runs 1 and 2 (Random Runs), the stimulus color was unrelated to

the position of the stimulus and the response. In Runs 3–10 (Correlated

Runs) the color had a fixed relation to the response (e.g., all upper-left and

lower-right stimuli were green, the remaining ones were red) (see Figure 1C).

Participants were not informed about this contingency, but could learn and

apply it spontaneously. Hence, on the one hand, the instructions provided a

functional set of rules to determine one’s responses (based on stimulus posi-

tion). On the other hand, an alternative rule based on the ‘‘irrelevant’’ feature

color could also be used once color correlated with corner (and hence signaled

the correct response). By the end of Run 10, all participants were informed

about the existence of a fixed association between color and corner (without

specifying the relation) and instructed to use the color from then on (Instructed
Runs). Each of the twelve runs of the main experiment lasted about 5 min and

was followed by a short break. The experimenter monitored performance of

participants. Written and oral feedback was given between runs if the error

rate exceeded 20%. The response stimulus interval was 400 ms. To measure

the learning and use of color information, we designed different trial condi-

tions. In the standard condition (80 out of 168 trials/run), the patch of dots

was presented for 400 ms and was closest to one of the four corners of the

reference frame. Thus, a response could be selected as instructed based on

stimulus position. Unmentioned to the participants, however, the stimulus

was centered within the reference frame in some trials (ambiguous condition,

32/168 trials, display duration 400 ms; see Figure 1A). The ambiguous trials

allowed for an online assessment of the tendency to use color because a

participant can be expected to respond left or right at chance level to a cen-

trally presented green stimulus—unless s/he has already learned that, for

example, green stimuli are usually followed by a right response. Choices,

which were more consistent with the color than expected by chance, thus

reflect emerging knowledge about this contingency. A pilot experiment

applying ambiguous trials only late in practice showed that the introduction

of ambiguous trials neither evokes nor hinders color usage. To allow efficient

measuring of BOLD responses related to color but not corner, the colored

squares were displayed for 2,000 ms without a reference frame in some trials

(48/168 trials). In two thirds of these trials, the task afterward continued with

the next trial. Participants had to hold back any key press on the current trial

(NoGo condition, 32/168). In the remaining one third of these cases, the frame

was displayed after the initial 2,000 ms, and the participants had to react in a

regular fashion (LateGo condition, 16/168, display duration of stimulus with

frame: 400 ms). To ensure that the frame was indeed needed to make the cor-

rect choice, the stimulus always appeared at the same central location in each

trial, whereas the location of the frame was changed from trial to trial. It was

thus neither possible to ignore stimuli that lacked a reference frame nor to

respond prematurely. The NoGo trials were used to study changes in the neu-

ral representation of color information. In these trials, color was displayed long

enough to estimate a neural response. It was not confoundedwith spatial stim-

ulus information and motor activation was suppressed. Finally, in eight trials of

each run the screen remained black for 3,000 ms (baseline condition). Due to

the duration of the hemodynamic response function, the fast design of the

experiment resulted in event-related BOLD signals, which also contained a

signal proportion that reflected brain activation caused by previous and

following events. BecauseNoGo trials were central to themultivariate analyses

(see below), we ensured that all trials in the 4 s preceding and following each

NoGo trial were balanced. As we aimed at decoding color (red versus green),

we ensured that for each red NoGo trial we had a green one with the exact

same composition of preceding and following trials (i.e., color, corner, and

condition). To ensure balancing of the last trials in each run, we generated

balanced sequences of 168 trials and appended these with the first 12 trials

of the sequence. Hence, from the 180 trials in each run, only the first 168

were analyzed. This procedure ensured that biases in the unwanted signal pro-

portion were minimized. Additionally, we ensured representative frequency

distributions of condition and color within windows of 42 trials. This allowed

us to do analyses with a below-run temporal resolution, which still had minimal

biases in the trial structure or signal.

Before entering the scanner, participants were instructed and trained in the

task. The instructions described all conditions (except ambiguous trials). Par-

ticipants were only told to press any key of their choosing in case they were

uncertain about the stimulus location. The color of the stimuli was mentioned

only in an unspecified manner (‘‘A stimulus can be either red or green.’’). The

response mapping was shown in all color combinations (a stimulus in each

of the four corners was shown in both red and green during the instruction).

In the training phase, participants were slowly accustomed to the short display

durations (the display duration was successively shortened until it reached

400 ms). Feedback was given for all wrong and premature responses and

time-outs (2,500 ms threshold). The color of the stimuli had no systematic rela-

tion to stimulus position during training. The training lasted at least 50 trials and

endedwhen the participant made less than 20%errors in 24 consecutive trials.

If the participant exceeded 168 trials without reaching the criterion, the training

was restarted. Participants were further instructed that upon entering the

scanner, no more feedback would be provided. After completion of the main
Neuron 86, 331–340, April 8, 2015 ª2015 Elsevier Inc. 337



experiment, participants completed a questionnaire with the following ques-

tions: (1) ‘‘In the experiment, which you have just completed, each corner

had one associated color. Did you notice this while you were performing the

task?’’ [yes/no]. (1b) ‘‘If yes, when did you notice this (after what percentage

of the experiment)’’ [participants had to mark their answer on a scale

from 0% to 100%]. (1c) ‘‘Did you use this color-corner relation to perform

the task, i.e. to choose which button to press?’’ [yes/no]. (2) ‘‘Please indicate

now which color the stimulus had for each of the four corners. If you did not

notice this relation during the experiment or you are uncertain, you can guess.’’

The task employed for the control experiment was identical to the main exper-

iment with the exception that it was automatically stopped once a participant

showed the first clear signs of color use. Because its purpose was to shed light

on the role of conscious awareness in our task and to reduce the concern that

retrospective memory of longer time periods might be unreliable, we used this

automatic stopping procedure to ask participants about their conscious

knowledge at a time that was much closer to their behavioral switch. To deter-

mine the stopping criterion, we fitted a logistic regression to predict participant

group (color users/no color user) based on the maximum overall percent of

color use in ambiguous trials in the main experiment. The resulting threshold

was 82% and correctly identified 91% (10/11) of color users while misidentify-

ing only one corner user. Therefore, as soon as participants crossed this

threshold (in the last two blocks over a running average), they were stopped

in the control experiment. After the stop, participants were asked the

same questions from the post-experimental questionnaire described above.

Furthermore, we asked participants about four potential properties of insight:

(1) whether they gained awareness suddenly, (2) whether the alternative strat-

egy did seem obvious after they learned about it, (3) whether it they could not

tell how they came to know about the alternative strategy, and (4) whether they

have been very sure that the new strategy is valid for the whole task. Finally, we

also asked them whether they initially started using the color involuntarily and

only realized later that the colors could be used.

Behavioral Analyses

Behavioral analyses were done using R (R Development Core Team, 2013).

Time-out trials were excluded from all analyses and error trials from RT ana-

lyses. For each ambiguous trial, it was determined if the given response was

the one predicted by the stimulus color or not (henceforth: ‘‘color use’’).

A participant was classified as a color user if s/he indicated a strategy switch

in the questionnaire. These responses were 100% in line with a behavioral

analysis, which determined if color use in the last run was at least 75%

(p < 0.005, binomial test over all 32 ambiguous trials in this run). Remaining par-

ticipants were classified as corner user. Six corner users reported having

noticed the color-corner relation but that they had refrained from using it.

For the behavioral and neural analyses, we divided the task into blocks of 84

trials each (half a scanner run). For each block, the median RT, mean percent

of errors, and color use was calculated.

For the present experiment, it was important that we could determine when

participants began using the color. To this end, we used the CUSUM method

to determine the block when a color user started using the color. This method

effectively detects the block where a participant started performing above her/

his own overall mean level (i.e., the point in a time series where a large upward

change occurs) (see Durstewitz et al., 2010). Because corner users per

definition do not have a change point, we used the change points that were

determined for color users and randomly assigned them to corner users.

This resulted in an equal distribution of task experience before/after the

change-points for both groups. The results can be seen in Figure 2, where

the dashed vertical lines indicate the change point.

In order to rule out that our results are dependent on the random assignment

of switch-points to corner users, we applied the CUSUM algorithm to corner

user’s data. This is an interesting test because even if a data series does not

have a clear switch point, the CUSUM algorithm will still find the point of great-

est change and thus can serve as a conservative control. Indeed, the resulting

time series of corner users shows an increase in color use around the change-

point (an artifact of the algorithm), but importantly, this increase was still

considerably smaller and more transient as compared to color users (interac-

tion Time 3 Group, F(10, 340) = 9.4, p < 0.001; see Figure S1). Hence, even in

comparison to a stringent test, color user’s showed larger change points than
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corner users. In the analysis with change-point aligned data, we only consider

time points with complete data from all subjects (if the earliest switch-point

was at block 6, the maximum number of blocks before the switch was con-

strained to be five, etc.).

Scanning Protocol and Data Preprocessing

Acquisition of magnetic resonance images was conducted at the Berlin

Center for Advanced Neuroimaging, Charité Berlin. We used a 3 T Siemens

MagnetomTrio (Siemens) research-dedicated MRI scanner to acquire all

data. T1-weighted structural images were acquired with an MP-RAGE pulse

sequence with a resolution of 1 mm3. A T2*-weighted echo-planar imaging

(EPI) pulse sequence was used for functional imaging (3 3 3 3 3 mm voxels,

slice thickness = 3mm, TR = 2,000ms, TE = 30ms, FOV = 192mm, flip angle =

78�, 33 axial slices, descending acquisition). EPI slices were aligned to the

anterior-posterior commissure axis. Field maps for distortion correction

were acquired also using an EPI sequence. To allow for T1 equilibration

effects, the experiment was started 6 s after the acquisition of the first volume

of each run. fMRI data preprocessing was done using SPM8 (www.fil.ion.ucl.

ac.uk/spm) and involved a correction for magnetic inhomogeneities using

fieldmaps and spatial realignment.

Decoding

Whole-brain maps of parameter estimates from first-level subject-wise GLM

analyses were subjected to multivariate pattern classification following a

searchlight approach (Haynes et al., 2007; Kriegeskorte et al., 2006). To obtain

these parameter (beta) maps, we conducted two separate GLM analyses. For

color classification, the GLM included two separate regressors for each block

and condition (four regressors per block), two modeling all red, and two

modeling all green NoGo trials (each regressor modeled four trials; duration

each 2,000 ms). Regressors modeled half blocks instead of blocks to get bet-

ter temporal resolution and to have more data for training/testing the classifier.

The GLM also included six motion regressors and one intercept regressor per

run, but no events from other conditions. For corner classification, the GLM

included two separate regressors for each block and corner (modeling five tri-

als per corner) plus six motion and one intercept (constant) regressor per run.

We used a SVM with a linear kernel (cost parameter = 1) to classify patterns

within spherical clusters centered on each voxel (LIBSVM; www.csie.ntu.

edu.tw/�cjlin/libsvm) and the Princeton MVPA toolbox (http://code.google.

com/p/princeton-mvpa-toolbox) for data organization. To analyze the repre-

sentation of color, the classifiers were trained on the regressors modeling

NoGo trials in the last two runs (i.e., eight red and eight green betas). In these

runs, all participants showed strong color use; hence, brain activity in this time

window reflects a task set that includes the use of color (see Figure 2A). The

classifiers were then tested on betas from Runs 1–10. This resulted in one ac-

curacy map for each block and subject, hence allowing us to analyze the time

course of color representation within a given spherical cluster. We note that

one potential confound of our findings is that color was fully correlated with re-

sponses and the classifier performance could have been based on sub-

threshold response preparation (even in NoGo trials). Yet, in light of the very

limited number of responses in NoGo trials (see Figure 2F), this interpretation

seems unlikely. In addition, the classifier can only pick up a signal if partici-

pants prepare responses based on the color and hence increased classifier

performance before a behavioral change would still hint at a mechanism for

internal simulation of the alternative strategy. The analysis of corner represen-

tation was done by training the classifiers on standard trials in Runs 1 and 2

(in which color was uncorrelated to corner and hence brain activity should

reflect the instructed task set based on corner) and testing the classifiers in

Runs 3–12. To avoid results associated with motor responses during standard

trials, this procedure was done separately for each set of two corners that were

mapped to one hand: one set of classifiers was trained to distinguish between

patterns associated with upper-left and lower-right standard trials, which were

both associatedwith the right hand, and another set, classified upper-right and

lower-left standard trials. The results of the two classifiers were averaged. For

statistical inference on the group level, normalized and smoothed (2 mm

FWHM) accuracy maps were submitted to second-level analyses in SPM. All

time points were aligned relative to the individual change-point of color use.

As mentioned above, the calculation of the change-points was derived from

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm
http://code.google.com/p/princeton-mvpa-toolbox
http://code.google.com/p/princeton-mvpa-toolbox


behavioral data in a different condition (ambiguous trials) and hence was inde-

pendent of the current analysis. Our main hypotheses regarded changes

emerging immediately before and after the behavioral switch, and hence the

possible blocks (�5 to +6; i.e., the relative time windows where data were

available from all subjects) were divided into these categories. Maps contain-

ing the average classification within these time-windows (before, after, overall

mean) were then submitted to separate t-tests. All resulting t-maps were

thresholded at p < 0.01 with appropriate FWE cluster size correction (pFWE =

0.05). To illustrate the precise development of representations within the

above-threshold clusters, time courses of average accuracies (smoothed

with moving average of length 2 blocks) in the identified voxels were extracted

and shown separately. Time courses only serve to illustrate the temporal struc-

ture. The interaction test between ROI and time used cross-validated ROI def-

initions. Specifically, the analysis of color encoding immediately before and

after was repeated for odd- and even-numbered participants. 7 mm spheres

were centered on the resulting peak voxels (analysis constrained to prefrontal

cortex (i.e., Brodmann areas 8–12, 24, 32, 33, and 44–47), which were, as in

the main analysis, in medial (‘‘switch contrast’’ peaks at �9/34/39, Frontal_

Sup_Medial_L and 0/62/17, Frontal_Sup_Medial_L) and lateral PFC (‘‘after

contrast’’ peaks at 42/4/8, Insula_R and 45/-4/2 Insula_R). These spheres

were used as ROIs for the ANOVA. The time effects involved the three factors:

‘‘Before,’’ ‘‘Immediately Before,’’ and ‘‘After,’’ which were defined as

blocks �5, �4, �3; versus �2, �1, 0; and +1 to +5, respectively.

Classifying Subjects into Groups Based on Brain Data

To avoid peeking during the subject classification analysis, we split the color

usergroup into twosubgroups inwhichweselectedvoxels separately. Inpartic-

ular, for voxel selection,we repeated the t-testofmeancolor classification in the

switch timewindowoncewith onlyodd- andoncewith only even-numberedco-

lor users. The resulting maps were masked with an anatomical mask of PFC

(Brodmannareas8–12, 24, 32, 33, and44–47), and timecourseswere extracted

from a spherical cluster around the peak voxel (radius 8 mm, the peaks of the

odd and even groups are shown in Figure 5A; peak locations are marked in

white). For each of the two resulting clusters, we used the time courses of color

decoding accuracy of the remaining color users as well as half of the corner

users (i.e., subjects not used for voxel selection) to classify subjects as either

belonging to the color users or not (odd/even cross validation; i.e., the cluster

defined in odd participants was used to test classification in even participants

and v.v.). For classification with change-point-locked time courses, we used

a very simple threshold classifier that assigned group status based on whether

(rounded) decoding accuracy was > 50% (color user) or not (position user). The

classifier performancewasevaluatedusing theprobability of thenumberof cor-

rect guesses under a hypergeometric distribution given the baseline probability

and total number of guesses at each time point (the number of participants

labeled as color users was not constrained and differed between time points).

A control ROC analysis that shows how this effect behaves across different

thresholds canbe found in theSupplemental Information andFigureS3. Further

supporting results from an analysis, which uses natural (not time-locked) data,

can be found in in the Supplemental Information and Figure S4.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and one table and can

be found with this article online at http://dx.doi.org/10.1016/j.neuron.2015.
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Supplemental Figures 
 

Figure S1, Related to Figure 2 
 

 
 
Figure S1. Behavioral results with alternative time locking of corner users. Instead of 
random assignment, corner users’ switch-points were defined based on the CUSUM 
algorithm. Otherwise, the figure corresponds in all respects to Figure 2 of the main 
article.  (i) Average percent of choices consistent with color when stimulus position was 
ambiguous across blocks (one block = 84 trials). (ii) Time locked color use data. In 
comparison to Figure 2, this shows that the sheer power of the CUSUM algorithm is able 
to cause a dip and increase in corner users’ color use around the time of the switch. The 
increase in color use is transient and not as strong as in color users, however. (iii-vi) 
Importantly, the results of all other analysis on RTs or errors are qualitatively the same 
as compared to Figure 2.  
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Figure S2, Related to Figure 3 
 

  
Figure S2. Classification results for corner users. The figure shows brain maps indicating 
significant color (upper row) and corner (lower row) classification among corner users. 
The analysis is complimentary to the analyses shown in Figs. 3 and 4 in the main paper 
(same time windows, and statistical threshold). The maps are divided into analyses 
considering the whole time series (mean, 1st column from left), all blocks before the 
switch (before, 2nd column), only the two blocks immediately before the switch (switch, 
3rd column) and all blocks after the switch (after, 4th column). Corner users’ switch was 
defined based on the switch points of color users (see Methods). Because the definition 
of time windows with this method might be noisy, the image showing the mean across all 
time points is the most easy to interpret, whereas other results have to be interpreted 
with caution. Empty brain images indicate that this respective analysis did not yield any 
significant results. In summary, we found that among corner users corner decoding 
worked well in all time windows and showed significant classification in visual cortex, 
precuneus, MPFC, lateral PFC and pre-and postcentral gyri, but color classification was 
much weaker throughout and confined to visual cortex.  
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Figure S3, Related to Experimental Procedures 

 
Figure S3. Time resolved ROC analysis for classification of participants. Each panel 
shows a receiver operating characteristic (ROC) curve for one block (see title of plot). 
This analysis is complimentary to the Experimental Procedures and Figure 5 in the main 
paper. In each ROC analysis, participant group (color or corner user) was predicted 
using different thresholds on the color classification accuracy within MPFC. As in the 
main analysis, the relevant ROIs were defined in a cross-validated manner and the 
analysis was run on time courses smoothed with a running average of 2 (see also Fig. 3, 
4, 5). The sensitivity (proportion of subjects classified as color users, given that they are 
indeed color users, y-axis; p(classified: color | color)) and specificity (proportion of 
subjects classified as color users, given that they are corner users, x-axis; p(classified: 
color | corner)) are plotted as points within the graph, whereby different thresholds are 
color-coded. To better illustrate overlapping points, colors are semi transparent and 
jittered along the x-axis (Gaussian, SD = 0.01). As can be seen, the time-points around 
the switch allow the best classification across a range of thresholds. 
 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time −5

AUC = 0.53

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time −4

AUC = 0.61

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time −3

AUC = 0.59

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time −2

AUC = 0.58

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time −1

AUC = 0.61

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time +1

AUC = 0.63

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time +2

AUC = 0.55

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time +3

AUC = 0.51

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

4
0.

8
0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time +4

AUC = 0.48

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
10
20
30
40
50
60
70
80
90
100

thresh

p(classified: color|corner)p(
cl

as
si

fie
d:

 c
ol

or
|c

ol
or

)

Time +5

AUC = 0.47



	
   4 

 
Figure S4, Related to Figure 5 

 

 
 
Figure S4. Prediction of strategy switch without time-locking. To test whether we could 
also predict participants’ choice to switch strategy without knowledge about the switch-
point, the classification was repeated without time-locking data. To this end, we applied a 
binomial test on the number of runs in which color classification was greater than 50%. 
The curve shows the sensitivity and specificity of this test if different thresholds are 
applied; see Fig. S3 (a ROC curve is shown for different thresholds of p). Best 
classification could be achieved using the conventional p = .05 or .10 thresholds (points 
overlap, see note in plot). ROI selection and time course smoothing as in Figs. 3, 4, 5 
and S3.  
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Supplemental Tables 
 
 

Table S1, Related to Figure 3 
 

ID Centroid MNI 
Coordinates 

Maxpeak 
(%) 

No. 
Vox 

Region Dist 
(Vox) 

X Y Z 
1 3 56 22 93.3 45 Medial Frontal Gyrus (R) 2.8 
2 3 56 40 91.1 5 Medial Frontal Gyrus (R) 4.3 
3 12 59 16 85.2 9 Medial Frontal Gyrus (R) 4.8 
4 9 44 19 89.2 45 Anterior Cingulate Cortex (R) 5.9 
5 -3 41 22 87.3 60 Medial Frontal Gyrus (L) 6.9 
6 -6 41 13 91.8 18 Anterior Cingulate Cortex (L) 9.1 
7 -18 44 13 92.6 26 Superior Frontal Gyrus (L) 10.2 
8 15 35 49 88.3 83 Superior Frontal Gyrus (R) 11.3 
9 6 41 -23 83.8 8 Gyrus Rectus (R) 17.8 
10 -6 2 28 94.1 18 Middle Cingulate Cortex (L) 19.4 
11 -45 26 34 90.7 13 Middle Frontal Gyrus (L) 20.3 
 
Note: Characteristics of clusters with significant classification during switch for 
individual color using subjects. The table is sorted by distance to the group peak 
and contains the locations (centroids), peak decoding accuracies, number of 
voxels, AAL atlas labels (Tzourio-Mazoyer et al., 2002) and peak-to-peak 
distances from the group result. To determine these clusters, we applied a 
threshold of 80.6% to the individual decoding accuracy maps (p = .01 according 
to empirical distribution of corner users, minimum cluster size: 5 voxels). 
Because the main purpose of this table is to shed some light on the individual 
clusters contributing to the group cluster, we list only the peak that is closest to 
the peak group result. 
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